Applications of the ADIFOR 3.0 Automatic Adjoint Generation Tool at the NASA Langley Research Center

Lawrence L. Green

Multidisciplinary Optimization Branch NASA Langley Research Center

Michael A. Park

George Washington University

Joint Institute for the Advancement of Flight Sciences

David L. Raney

Dynamics and Control Branch
NASA Langley Research Center

Objectives

- Apply <u>Automatic Differentiation of Fortran (ADIFOR)</u>, version 3.0, to codes of interest for NASA
- Demonstrate ADIFOR 3.0 automatic adjoint generation capability in:
 - Aerodynamic Sensitivity Analysis (wing grid generation + computational fluid dynamics)
 - Aerodynamic Shape Optimization (Aerodynamic Sensitivity
 Analysis + gradient-based optimization)
 - Aerodynamic Control Effectiveness Analysis

Acknowledgements

Alan Carle and Mike Fagan of Rice University
Joanne Walsh of NASA Langley Research Center (NASA LaRC)

ADIFOR 3.0 from Rice University

- Forward mode (ADIFOR)
- Chain rule of calculus
- Forward propagation of derivatives through the code
- independent variables
- Forward mode second derivatives

- Reverse Mode ("ADJIFOR")
- Discrete adjoint formulation
- Backward propagation of adjoints through the code
- Best for more dependent than Best for more independent than dependent variables

Many Dependents **Independents**

AIAA Paper 94-2197

AIAA Paper 99-3136

AIAA Paper 98-4807

AIAA Paper 99-3136

Aerodynamic Sensitivity Analysis Geometry and Grid Generation

- Simple Fortran wing geometry and grid generation code (MYGRID) created for ADIFOR studies
 - Swept, tapered transport-like wing planforms
 - NACA four digit airfoil series wing sections
 - Single-block grids generated; split for parallel flow solver execution
 - Grid quality was low in consideration
 - Many shape design variables (DV) desired for adjoint studies
- ADIFOR 3.0 generated MYGRID.ADJ code computes <u>exact</u> surface and volume grid adjoints

Aerodynamic Sensitivity Analysis Computational Fluid Dynamics (CFD)

- CFL3D code by Thomas, Rumsey, and Biedron of NASA LaRC
 - Iteration required to solve the Euler / Navier-Stokes flow equations in conservation form
 - Numerous grid, solver, and convergence acceleration options
 - Sequential and parallel code versions used
- ADIFOR 3.0 generated CFL3D.ADJ code computes the <u>exact</u> lift-to-drag ratio (wing efficiency) adjoint
 - Initial differentiation excluded the viscous flow modeling routines
 - Automatically generated code required enormous disk storage (33GB)
- The manually implemented Iterated Reverse Mode (IRM) reduces disk storage by saving only the converged "steady-state" solution information

Aerodynamic Sensitivity Analysis Wing Design Variables (DVs) Definition

Section DVs: maximum thickness (tmx), maximum camber (cmx), x-location of maximum camber (xcm), and twist angle (tws) for each section

Aerodynamic Sensitivity Analysis Demonstrational Problem

- Volume grid sizes: 425, 2673, 18785, and 276705 points
- Point-matched wing grids
- Steady, inviscid, transonic flow around 3-D wing
- One output function (the wing lift-to-drag ratio)
- Up to 168 independent variables (wing shape parameters)

Target Problem

- Volume grid sizes: 400,000 (inviscid wing)
- Patched and overset grids
- Time dependent viscous flow around 3-D aircraft configuration
- Multiple output functions (objective + flow-dependent constraints)
- Up to 500 independent variables (aircraft shape parameters)

Aerodynamic Shape Optimization Gradient-Based Optimization

- JOPT = CONMIN + first-order Taylor series approximation to the nonlinear optimization problem, based upon function and gradient
- Optimization objective minimize -(CL / CD), or maximize (CL / CD)
- Up to 168 design variables (8 DV per section, 21 wing sections)
- DV bounds and optimization move limits imposed
- Unconstrained optimizations and geometry / grid generation executed on workstation
- Aerodynamic function and gradient execution on up to 33 processors of a NASA Ames SGI Origin 2000

Aerodynamic Shape Optimization Optimization Flowchart

Aerodynamic Shape Optimization Planform and Thickness Optimization Results M = 0.84, $\alpha = 3.06$ degrees, 276705 grid points, 21 wing sections, 9 optimization cycles

Aerodynamic Control Effectiveness Analysis Computational Fluid Dynamics (CFD)

- PMARC code from NASA Ames Research Center
 - Iteration required to solve potential flow equations
 - Inviscid, irrotational, and incompressible flow
 - Boundary layer and compressible flow corrections available; not used
 - Full 3-D aircraft configuration modeled
- ADIFOR 3.0 generated PMARC.ADJ code computes the <u>exact</u> adjoints of three body axis moments with respect to thousands of discrete surface shape changes
- "Black-box" automatic adjoint code generation
 - New ADIFOR 3.0 user trained and generating code within days
 - Execution through entire iteration process
 - No IRM techniques employed
 - Manageably large disk file generated

Aerodynamic Control Effectiveness Analysis Lockheed-Martin Tactical Aircraft Systems Innovative Control Effectors (ICE) Configuration

Aerodynamic Control Effectiveness Analysis Lockheed-Martin Tactical Aircraft Systems Innovative Control Effectors (ICE) Configuration

AIAA Paper 99-3136 discusses derivatives of forces and moments with respect to angle of attack (α) and angle of sideslip (β)

Aerodynamic Control Effectiveness Analysis Derivative Definition

Sensitivities

- Derivatives of pitch, roll, and yaw moment coefficients with respect to a displacement of 1353 discrete surface grid points normal to the surface

 Coarse resolution surface grid sensitivities interpolated over the configuration for plotting

$$dC_{\mathbf{m}}/dX_{\mathbf{n}}$$

$$\mathrm{d}C_{\mathbf{l}}/\mathrm{d}X_{\mathbf{n}}$$

$$\mathrm{d}C_{\mathbf{l}}/\mathrm{d}X_{\mathrm{n}}$$
 $\mathrm{d}C_{\mathbf{n}}/\mathrm{d}X_{\mathrm{n}}$

Aerodynamic Control Effectiveness Analysis Pitch Control Effectiveness Sensitivity Contours (Incompressible Flow, α =4.39)

Aerodynamic Control Effectiveness Analysis Most Promising Designs (Used in Control Law Simulation)

Concluding Remarks

- ADIFOR 3.0 automatically generated adjoint code has been used in aerodynamic sensitivity analyses, aerodynamic shape optimization, and a control effectiveness analysis at NASA LaRC
- ADIFOR 3.0 generated CFL3D.ADJ adjoint code requires the execution time of about 6 to 20 function evaluations
- The Iterated Reverse Mode (IRM) technique significantly reduces the computer disk storage of adjoint code for iterative solutions
- ADIFOR 3.0 generated CFL3D.ADJ adjoint code only requires about Kbytes of RAM and about 32 Kbytes disk per grid point; enables target problem to be solved on moderate parallel computer
- Use of ADIFOR 3.0 generated adjoint sensitivities enabled the development of an interactive control selection and evaluation tool